
STA303: Artificial Intelligence

Fang Kong

https://fangkongx.github.io/

Part of slide credits: ai.berkeley.edu

Games: Minimax and Alpha-Beta Pruning

https://fangkongx.github.io/

Outline

§ History / Overview

§ Minimax for Zero-Sum Games

§ α-β Pruning

§ Finite lookahead and evaluation

Game Playing State of the Art
§ Checkers:

§ 1950: First computer player
§ 1959: Samuel’s self-taught program
§ 1995: First computer world champion*
§ 2007: Checkers solved!

§ Chess:
§ 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon,

McCarthy.
§ 1960-1996: gradual improvements
§ 1997: Deep Blue defeats human champion Garry Kasparov
§ 2024: Stockfish rating 3631 (vs 2847 for Magnus Carlsen)

§ Go:
§ 1968: Zobrist’s program plays legal Go, barely (b>300!)
§ 1968-2005: various ad hoc approaches tried, novice level
§ 2005-2014: Monte Carlo tree search -> strong amateur
§ 2016-2017: AlphaGo defeats human world champions
§ 2022: Human exploits NN weakness to defeat top Go programs

§ Pacman

Behavior from Computation

Adversarial Games

§ Game = task environment with > 1 agent
§ Axes:

§ Deterministic or stochastic?
§ Perfect information (fully observable)?
§ Two, three, or more players?
§ Teams or individuals?
§ Turn-taking or simultaneous?
§ Zero sum?

§ Want algorithms for calculating a strategy (policy) which recommends a
move from every possible state

Types of Games

Deterministic Games

§ Many possible formalizations, one is:
§ States: S (start at s0)
§ Players: P={1…N} (usually take turns)
§ Actions: A (may depend on player/state)
§ Transition function: S x A → S
§ Terminal test: S → {true, false}
§ Terminal utilities: S x P → R

§ Solution for a player is a policy: S → A

Zero-Sum Games

§ Zero-Sum Games
§ Agents have opposite utilities
§ Pure competition:

§ One maximizes, the other minimizes

§ General-Sum Games
§ Agents have independent utilities
§ Cooperation, indifference, competition,

shifting alliances, and more are all possible

§ Team Games
§ Common payoff for all team members

Adversarial Search

Single-Agent Trees

8

2 0 2 6 4 6… …

Value of a State

Non-Terminal States:

8

2 0 2 6 4 6… … Terminal States:

Value of a state:
The best achievable

outcome (utility)
from that state

Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8

Minimax Values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

Tic-Tac-Toe Game Tree

Adversarial Search (Minimax)

§ Deterministic, zero-sum games:
§ Tic-tac-toe, chess, checkers
§ One player maximizes result
§ The other minimizes result

§ Minimax search:
§ A state-space search tree
§ Players alternate turns
§ Compute each node’s minimax value:

the best achievable utility against a
rational (optimal) adversary

8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Minimax Implementation

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Implementation (Dispatch)

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Minimax Example

12 8 5 23 2 144 6

Minimax Properties

Optimal against a perfect player. Otherwise?

10 10 9 100

max

min

[Demo: min vs exp (L6D2, L6D3)]

Handling games with 3+ players

Multi-Agent Utilities

§ What if the game is not zero-sum, or has multiple players?

§ Generalization of minimax:
§ Terminals have utility tuples
§ Node values are also utility tuples
§ Each player maximizes its own component
§ Can give rise to cooperation and

competition dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

Emergent coordination in ghosts

Minimax Efficiency

§ How efficient is minimax?
§ Just like (exhaustive) DFS
§ Time: O(bm)
§ Space: O(bm)

§ Example: For chess, b » 35, m » 100
§ Exact solution is completely infeasible
§ But, do we need to explore the whole

tree?

Resource Limits

Game Tree Pruning

Minimax Pruning

12 8 5 23 2 14

✂
The order of generation matters:
more pruning is possible if good moves come first

Alpha-Beta Pruning

§ General case (pruning children of MIN node)
§ We’re computing the MIN-VALUE at some node n
§ We’re looping over n’s children

§ n’s estimate of the childrens’ min is dropping
§ Who cares about n’s value? MAX
§ Let α be the best value that MAX can get so far at any

choice point along the current path from the root

§ If n becomes worse than α, MAX will avoid it, so we can
prune n’s other children (it’s already bad enough that it
won’t be played)

§ Pruning children of MAX node is symmetric
§ Let β be the best value that MIN can get so far at any

choice point along the current path from the root

MAX

MIN

MAX

MIN

α

n

Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta Quiz

Alpha-Beta Quiz 2

Alpha-Beta Pruning ProperSes

§ This pruning has no effect on minimax value computed for the root!

§ Values of intermediate nodes might be wrong
§ Important: children of the root may have the wrong value
§ So the most naïve version won’t let you do action selection

§ Good child ordering improves effectiveness of pruning

§ With “perfect ordering”:
§ Time complexity drops to O(bm/2)
§ Doubles solvable depth!
§ Full search of, e.g. chess, is still hopeless…

§ This is a simple example of metareasoning (computing about what to compute)

10 10 0

max

min

Resource Limits

Resource Limits

§ Problem: In realistic games, cannot search to leaves!

§ Solution: Depth-limited search
§ Instead, search only to a limited depth in the tree
§ Replace terminal utilities with an evaluation function for

non-terminal positions

§ Example:
§ Suppose we have 100 seconds, can explore 10K nodes / sec
§ So can check 1M nodes per move
§ a-b reaches about depth 8 – decent chess program

§ Guarantee of optimal play is gone

§ More plies makes a BIG difference

§ Use iterative deepening for an anytime algorithm
? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Evaluation Functions

EvaluaSon FuncSons
§ Evaluation functions score non-terminals in depth-limited search

§ Ideal function: returns the actual minimax value of the position
§ In practice: typically weighted linear sum of features:

§ E.g. f1(s) = (num white queens – num black queens), etc.
§ Or a more complex nonlinear function (e.g., NN) trained by self-play RL

Evaluation for Pacman

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function), smart ghosts coordinate (L6D6,7,8,10)]

Video of Demo Thrashing (d=2)

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function) (L6D6)]

Why Pacman Starves

§ A danger of replanning agents!
§ He knows his score will go up by eating the dot now (west, east)
§ He knows his score will go up just as much by eating the dot later (east, west)
§ There are no point-scoring opportunities after eating the dot (within the horizon, d=2)
§ Therefore, waiting seems just as good as eating: he may go east, then back west in the next

round of replanning!

t=0 t=1

Video of Demo Thrashing -- Fixed (d=2)

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function) (L6D7)]

Depth Matters

§ Evaluation functions are always
imperfect

§ The deeper in the tree the
evaluation function is buried, the
less the quality of the evaluation
function matters

§ An important example of the
tradeoff between complexity of
features and complexity of
computation

[Demo: depth limited (L6D4, L6D5)]

Video of Demo Limited Depth (2)

Video of Demo Limited Depth (10)

Synergies between Evaluation Function and Alpha-Beta?

§ Alpha-Beta: amount of pruning depends on expansion ordering
§ Evaluation function can provide guidance to expand most promising nodes first

(which later makes it more likely there is already a good alternative on the path to
the root)
§ (somewhat similar to role of A* heuristic)

§ Alpha-Beta: (similar for roles of min-max swapped)
§ Once value of min-node lower than better option for max along path to root, can

prune
§ Hence: IF evaluation function provides upper-bound on value at min-node, and

upper-bound already lower than better option for max along path to root
THEN can prune

Summary

§ Games are decision problems with ³ 2 agents
§ Huge variety of issues and phenomena depending on details of interactions and payoffs

§ For zero-sum games, optimal decisions defined by minimax
§ Simple extension to n-player “rotating” max with vectors of utilities
§ Implementable as a depth-first traversal of the game tree
§ Time complexity O(bm), space complexity O(bm)

§ Alpha-beta pruning
§ Preserves optimal choice at the root
§ Alpha/beta values keep track of best obtainable values from any max/min nodes on path

from root to current node
§ Time complexity drops to O(bm/2) with ideal node ordering

§ Exact solution is impossible even for “small” games like chess

Next Time: Uncertainty!

